(12)

United States Patent
Thakkar et al.

US009239855B2

US 9,239,855 B2
Jan. 19, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

")

@
(22)

(65)

(60)

(1)

(52)

(58)

METHOD AND SYSTEM OF RETRIEVING
DATA IN A DATA FILE

Applicant: PIXIA CORP., Reston, VA (US)

Inventors: Rahul C. Thakkar, Sterling, VA (US);
Scott L. Pakula, Chantilly, VA (US)
Assignee: PIXIA CORP., Reston, VA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 354 days.

Appl. No.: 13/779,275
Filed: Feb. 27,2013

Prior Publication Data

US 2014/0156802 A1l Jun. 5, 2014
Related U.S. Application Data

Provisional application No. 61/733,228, filed on Dec.
4,2012.

Int. Cl.

GO6F 15/16 (2006.01)

GO6F 17/30 (2006.01)

HO4L 29/08 (2006.01)

HO04L 29/06 (2006.01)

U.S. CL

CPC GO6F 17/30312 (2013.01); GO6F 17/30233
(2013.01); HO4L 29/08117 (2013.01); HO4L
65/4084 (2013.01); HO4L 65/602 (2013.01);
HO4L 65/607 (2013.01)
Field of Classification Search

CPC ..o GOGF 17/30233; HO4L 65/4084;
HOAL 65/602; HO4L 65/607; HO4L 29/08117

See application file for complete search history.

Data D

(Policy Pp (‘--N)k

(56) References Cited

U.S. PATENT DOCUMENTS

4/2010
3/2013
1/2014
2/2014
10/2004
11/2006
9/2007
10/2008
8/2009

Serlet et al.
Prahlad et al. 707/692
Douglis et al. 707/692
Cook et al.
ANdrewscooceevennrne 707/102
Sabsevitz et al.
Emling et al.
Bergauer et al.
Eastman et al.
12/2009 Rhodes et al.
5/2010 BenTsvietal. 707/758

(Continued)
OTHER PUBLICATIONS

7,693,962 B2
8,407,190 B2 *
8,639,669 B1*
8,650,166 Bl
2004/0205083 Al*
2006/0271596 Al
2007/0220014 Al
2008/0243960 Al
2009/0216907 Al*
2009/0327729 Al
2010/0125591 Al*

.............. 709/247

US Office Action dated Nov. 19,2014 for U.S. Appl. No. 13/779,390.
(Continued)

Primary Examiner — Chirag R Patel
(74) Attorney, Agent, or Firm — Pillsbury Winthrop Shaw
Pittman, LLP

(57) ABSTRACT

A method and system for retrieving at least a portion of a first
data file are provided. The method includes receiving a
request for the at least a portion of the first data file, the
request including a start of the at least a portion and a size of
the at least a portion; computing a data offset that is aligned to
an integer multiple of a block size of the storage device and
nearest to the start of the at least a portion; computing a
byte-range that is an integer multiple of the block size of the
storage device; reading data within the byte-range; and trans-
mitting the at least a portion starting at an offset relative to the
data offset that is aligned to an integer multiple of the block
size of the storage device.

22 Claims, 17 Drawing Sheets

AT
S

Data Storage
Device

— Data D

N~

US 9,239,855 B2

Page 2
(56) References Cited OTHER PUBLICATIONS
U.S. PATENT DOCUMENTS U.S. Office Action dated Jun. 5, 2015 for U.S. Appl. No. 13/779,390.
U.S. Office Action dated Jun. 18, 2015 for U.S. Appl. No.
2010/0153407 Al 6/2010 Krislov 13/779,303.
2011/0185292 Al* 7/2011 Chawlaetal. 715/760 International Preliminary Report on Patentability dated May 20,
2012/0059793 Al 3/2012 Shlomai et al. 2015.

2012/0254339 Al 10/2012 Holmes
2012/0290576 Al 11/2012 Amorim * cited by examiner

US 9,239,855 B2

Sheet 1 of 17

Jan. 19, 2016

U.S. Patent

(ITVNOLLNAANOD) I ‘OIA

I9AIOS

IOAIOG

(vivp pajsonba.)
asuodsad AVA9oM ['I dLIH T

(eyep JoJ 1sonbar)
1sonbai Ay QoM I'T dLIH ‘[

JuST[D

JuaII)

US 9,239,855 B2

Sheet 2 of 17

Jan. 19, 2016

U.S. Patent

A 4

asuodsay]

(TYNOLINAANOD) T "OIA

(NVT ‘1ouioniy ‘3'5)
YALOMIDN

2S1MY 2010 Jual])

(NV'T 12udapuy "37)
YAOMJON

wodf 3u1gavig

1senboy <

litlje)

US 9,239,855 B2

Sheet 3 0f 17

Jan. 19, 2016

U.S. Patent

¢ "Old
AN
(NCT) an %O:Om\ — (N1) Dm %OSOAM
YAOMJDN ,
JIATIOG s U3l <
—— 2.401g A S T ﬁ JUSID | q ereq
01A2(J
a3e101g BIR(T

>

U.S. Patent Jan. 19, 2016 Sheet 4 of 17

US 9,239,855 B2

Get capabilities of the Policy Capability (PC)
server for data type Tp.

S12

Receive list of derived data types supported
by the PC server and receive the parameters
for future dynamic generation of each
derived data type, from the PC server.

J S14

y

Prepare derived data generation policy Pp for
D of data type Tp. D is one data file or a
plurality of data files.

N

Transmit Pp to Ingest Server

Y

j S16
S18
S20

Stream D to Ingest Server

y
D

FIG. 4

US 9,239,855 B2

Sheet 5 0f 17

Jan. 19, 2016

U.S. Patent

4!

N

S O

Aupiqede)
Aorjod

‘a1 od&y vyep
1oy suondo pue sarorj0d
uoneIdUSS vlEp PaALIe(]

ssuodsoy

mﬁj

(NVT ‘1oudapuy “3-q)

IoAIDg

(NPT 9ouiajuy 37)
yLoMIIN

YAOMION
) asIMY2012
/ ud11D
. wodf
S Bupaoig
Al ||||||||||||||||||||||||||||||||

_

14!

-ay odA3 eiep
10y suondo pue sarorod
uoneIoUST BJRp PALISP
pawoddns 107 159nbayy

1sonbay]
seniqede) 190

Juar D)

11

01

US 9,239,855 B2

Sheet 6 of 17

Jan. 19, 2016

U.S. Patent

9 'OIA

%4
ST
(44 Q@) 10y 9] SIBYNUSPI PUSS J
IOAL[OP ‘ssa0ons uodp) -amprey
(NVT 92udomuf “8q)
9T J\ I0 §S200NS JO JUAMIABPIMOINAY [vi poonn
} asuodsay
IE (47 T e N\
[‘qu21y WOdf)
o Supanys ’
so1ae(] sSeroig vIRg | 19AI0G 1598U] R o fonod voneruad
h .3 ay, »d4
] (YT yousopy Bg) | Lods o
YL10MIaN ®B1ep JO pue dg 9ZIS
JO (] $9[U 10 sweans
BIED 2JOW 10 U()
14)
1senbay v1R(INd
—
Ic

US 9,239,855 B2

Sheet 7 of 17

Jan. 19, 2016

U.S. Patent

8¢ — |

N(T 914 18P PIALISD
[enuiA patesaued Ajjeorweui(]

9¢€ —

°{ 21y BIep PIALISP
[eniIiA polRISued AJ[BOTWRUA(]

Pe —

1 91y ®IBp POALISD
[enIA pajeIouad A[[eorweui(g

e —

JaA19S 9Y) Aq pefeurw pur
PIAJLIRI ‘PaABS 9q 03 JSAISS 3}
0] JURI[D Y} AQ PAISNIIUD SEM JBY)
ay, od£y wiep Jo pue 4g 9718 JO (J
91 e1R(] 1O WealS ele(AW

L 'O

adfy

BIEP PRALIOP OB2 JOJ $2INqLI)Ie uonem3ayuod [euondo
P2JOIS SI

(I 90UO 9A31121 0} $2dA) BIEP POALISP PIPUIUL JO IST]
JeULIO} o7 82

IOAJSS oY) Aq payoddns se ‘elepelall [RUOTIPPE AUy
e1Bp Arejuowdwod 94311321 0] UONUdIUI UBd[00y

ar

(1 JO swreN

d 31y e1ep 10§ 94 Aotjod

ooo0oo O O

)
/

/

{

0¢

US 9,239,855 B2

Sheet 8 of 17

Jan. 19, 2016

U.S. Patent

8 OIA

w

/

A[3-aty1-uo pajesousd ‘[emiaa — JIL NI 0001 ANVNITII

A-oyp-uo pajersusf Teniina — JNX V.ILYAVLIIW 0001 TNV NI TLI

Ay-ayp-uo pajeisusl Teniia — SV LIS 0001 HNYNETII

901A2p 23RI0]S 9pIs-12AIaS UO §I8TX%8 A[[eo1sfyd — QYT 0001 IV NI LI
35rI0IS APIS-IOAISS U0 2[1f Youa JO qlRIg

JLLWET 0001 NV NA TIL

TAXVIVAVIIW 0001 NV NI TIL
SYT.LHSH 0001 HWNVNATIA

SYT 0001 INVNITIA

a4 g un paseq 21 mduy JoJ saus Sunsi] K1010311p AYagom ddurexy

SVT000T INVNATIL
11, nduj ordurexg

oaoo

oooao

ov

8s[e] = JMIHPUSWL O
NIL=2ad1eea O
Anwg O
asfed = JMHPUL [
depmowo) = 9dl1eeq O
Anug O
as1e,] = SZIBULION
7ed =2ddpuod
TIS =BoHALL
TIS = WIPTMPAILL
AMIJ, =PaIL
dizry = 9apon
ana] = uoissaxduwoy)
9Z¢h:DSdd = S¥D
we'o=dasd
anI] = UIHpuajuj
AdIL03D = jeunioereq
WHQ =2d4 [ereq
Anug
0’| ATNHOSUaSHD 0 = BURYISTAX O
TWX = Jeunofered 0O
oni], = JUTHpUaW] MO
eiepesjn = adL1ereq O
Anug O
0'0¢ = WU JUONIN] 0SAY PEONPSYUIA
0°01 = WIHWNOAZISXe
0000001 = WIHSIUIOIXEN
€ TA-SV'] = 1BULIofeTe(
PRO[OIUIOJUONN]OSY P3NP = adL 1 ereq
Anug O
1s1TedA L Rrepaaneq
NI = BIBRQPIALISTIN0] UL
£'14-§VT = Jewogeied
AVArT prof) 1utog = ad< e
SVT 0001 HWVNITIL = dweNa1liereqd

00g0o000ooooo

0ogooo

00000

SVT'0001 TNVNA 1A
paureu (J a7 wfep YVQIT ProfD julod 10f g Aorjog spduwrexy

US 9,239,855 B2

Sheet 9 of 17

Jan. 19, 2016

U.S. Patent

6 "OId

[4Y
AN

0§

Ajg-o-uo pojeroussd ‘fenina — PAX VIVAVIAA 000100 HINYNNOISSIA
AJ-oU1-U0 POIRIOUAS “TeNiIA — ZdI TLAS-¥ 000 100 TN VNNOISSIN
A7J-0y)-u0 pajesaues ‘[eniuA — 7d[119S-¥ 000100 HNVNNOISSIA

S01A3P 93RI0IS APIS-ISAISS UO §3S1X0 AJ[estsAyd — zdf 000100 TN VNNOISSIA
93®I103S OPIS-IDAISS UO 21 oEa JO 318}§

TANX'VIVAV LA 000T00 TN VNNOISSIN
CALTLAS-H 000 TO0"HINVNNOISSTIA
TdI 1 LIS 000100 TN VNNOISSIN

247000100 TN VNNOISSIN
a4 uo paseq 31y mduj 107 sarius Sunsy| A1030911p AVAgaM d|durexy

Tdr'000100"INVNNOISSIN
a1 ndug ojdurexg

oooo

o0oao

0" TA-TTIAIOSURS DD = BWRSTINX O
TN = ewiogered O
AMI], = JUIHPUNU] [
vjepeleN = 2dS1eed O
Anug O
SN, = JUTHpUSIU]
¢ = onewyuoissaidwon
0¢61 = WIOHEXId
0761 = WPIMIEXId
¢d[0sD = JelLioJereq
Z-1RSeIR(JUONNOSYpaonpay = odL eI
Anud O
ANl = JUIFIpUaju|
S1 = oneyuoissaiduio)y
008 ¥ = WBIPHIOXId
0087 = WPIM[eXId
7d[o90 = 1euojereq
1-19SRIBUONN]OSIYPIONPIY = odA T rred
fnug O
1s17ad K L eIRIpoALIR(]
ANIL = BIRQPIALIRQIOD0] pUaju]
01 = onyeyuorssardwo)
ZIS =1ySdHaL,
CIS =WPIMIILL
000T1 = WSH[eXId
000TT = YIPIMISXId
7d[o9D = jeuLio Jeie(q
swel] INVM = 2dA1eeq
Td"000T00"HNVNNOISSIN = swreNs[Ifereq

0oo0o00ooog

gooooo

ZdI0001 00" N VNNOISSIA pauiet (J o[ejep

0000000000

sweyj L108ew] UOLOA BaIY-3pIA 10] 4 Ao1jo4 ojdwexg

US 9,239,855 B2

Sheet 10 of 17

Jan. 19, 2016

U.S. Patent

~

01 "OId

N

/
9 $Sa00® A1) BIR(
/

aq Aorjod

d °14 &led

“saro1j0d ss9008
D31BIOOSSE 29 SO[1
BIRP 2I0W IO JUQ)

991A9(J 98e101S BIR(

_—
//////Illl!lllr

N
-

|
|

JOAIRS
(44
A
YAOMIDN
0T
LEEHI0)

US 9,239,855 B2

Sheet 11 of 17

Jan. 19, 2016

U.S. Patent

v9

1T "OIA
(4N
p
N e1e(poALIdJ
=
]
2 eyR(q PaALIR(] W

VI e peAlIa(g

| d eeq

porsdyq

ANIAJO¥Yd Sunuowepduwr 10AI10S

\@\VJ

ﬁZ..DQm \AO:OAH |

A

 ereq L]

901A9(] 28rIMIS BI1B(

>

US 9,239,855 B2

Sheet 12 of 17

Jan. 19, 2016

U.S. Patent

6¢£S

\

¢l Ol

(44

J

aAvdHIoe ddvVdH V
sonbai ot se

LT
fq uo f(q uo la
ue (1 Wo
yLoMPN / 1senbal QVAH 1sonbal QvdH SM W sz: ﬁ@
W J10j asuodsal Joj ssuodsal :)
Jo az1s andwio)n
juniNiagg aredaig
 uo g uo
l yLoMpaN jsonbor qVAH jsenbol QVAH aaviH
o S S <
/ o asuodsazr Jo0J ssuodsal
ywsueI], aaedaig
L« s
14

VES 9oIf [enuIA POALISD & 10 21 [e01SAyd © J0] 1sanbal (TyaH © Sunuowsduwl IoAIdg

e

INMag forjod |

aered

901A9(] 98eI0IS BB

9¢

29

09

US 9,239,855 B2

Sheet 13 0of 17

Jan. 19, 2016

U.S. Patent

LT

YLOMIN

\

6¥S

8vS

¢l "Old

9¥S
(44

i
i

\

\
(114

YA0MPIN

LI

[—

L

fa *A1essaosu 7 1q 199
d uo oq Aew speas opdpnp 0¥S
paseq (1 =ep ’
[renued 10 *A[enred Jo Ajjoym (g L
poaatiop Tenred
J]0YM JISUBI], 1o at0Um peas pue dg Fuisn (7 woy -
Qﬁwcm P21 0) SIZIS PUE SIOSJJO ¢ 13d1oqLad
2 aJotu 10 suo andwon & Isanbal oy sep
'Aressooou
a rented 1o oq Aew speasa[dpinN | a.Lad
J[oyMm JuwIsueRL | *Arenred Jo Ajjoym (I eiep
pear 03 4§ 10 () pPUE § 98] ~
~ s
S S[1 JeniIA PIALISP € 10 o[1f [eo1sAyd e 1o 3sonbas 170 € Sunuswa]dwi 19A19G

\\I\ll}
IN“Tlag Koyjod L
9
aerd T~
09
21A9(1
a3ei01§ vIR(]
N

—=

9C

U.S. Patent Jan. 19, 2016

S50
\ Start

Sheet 14 of 17

Compute name and
Sg/ Input: PROPFIND other PROPFIND
request Ry, for data attributes of virtual
file D derived data file
! P
S53 : : - S59
Validate request Add an entry for virtual
(Syntax, Security, etc.) file D; to the response
l for PROPIND request
854 Rp
1 Load Pp for data file D —
S60
l
855/ For file D, add physical d of Derived Da
file entry in the No Type List? \1861

response for Rp

$56)\
Derived data No

wqucsted in Pp?

857

For entry J from 1 to N
in Derived Data Type
List

S58 l

Compute size of virtual
derived data file

S

US 9,239,855 B2

/ Send to client: Response for
PROPFIND request Ry, for
data file D. One entry for
physical data file D and
subsequent zero or more N
virtual derived data file
entries, one for each intended
data type based on policy Py
for D.

V 362

End N
— 863

FIG. 14

US 9,239,855 B2

Sheet 15 0of 17

Jan. 19, 2016

U.S. Patent

ST "OId

(E1INg AIOWAN “.SS ‘0 “TTLDOI LOFYIA DNISN aF¥d1INaNn avad
0] 10211 pPAUSI[Y pateynquy) Sursndg ozrIs JO (J 9]l 21Nus Y1 pray

(4AIINg AYOWAN “.S .0 “TILDOI LOMIIA ONISN aF¥ddiNgNn avad
O] 19211(] POUSY Y paleynqun) Suisn (91 Ul O 39SIJO WOLJ $3AQ § WOLJ pBaI [eied

371 Yo0]g 991AS(T 9Fe101§ JO o[dinuwi 989Ul UY 0 <9 _

=q % (g % 98) -*d) + 95 = 5|

=g 9% ((°d % (S + 10-0D) -*D) + (s + 00D = 3|

Q911 Bp 30 U |

4% 0)-0=.0]

A |

d a1y Bep
30 31e3S 0 198O

o
-
o

o

AL

U.S. Patent Jan. 19, 2016 Sheet 16 of 17 US 9,239,855 B2

S70
/ S71
Input: GET request Gp, for data file D of size Sp (Sp>0).
The GET request can be one of two types:
O A GET byte-range request starting from offsct O of size
S (where 0 <O < Spand 0 <O+S < S§p) or
O A GET request for the entire file D of size Sp.
1
¥
Validate request
(Syntax, Security, etc.) N
/£ 872

- — S73

\\
——Tsita GET Byte-Range\g

Yes \\\\ Request? /// No

e S74 S~

o T

<7 1sS=Spand O =10?

— " Yes
S78
N

e v
Q0=0-(0© %(;m)lpule O”and 8 Compute Sp’ where Sp’ = Sp+ (B, -

0 0,
O § = (0-01+8) + (Bu- ((0-0] +$) % By) % By, (S0%By,)) % By,

s79\\ l—/ I_| -

Issue a read request for Sp’ bytes from the start of the
data file D, using one or more Unbuffered Aligned
Direct 10 operation into computer memory. The read
operation may read past End of File (EOF) marker if D
is a single file on the storage device and Sp’ > Sp.
Reading past EOF js valid in the POSIX standard.

S80 — L¢ ‘ﬂ ' 577

— 875

Starting from offset O’ from the start
of data file D, read S’ bytes from the
data file D using one or more
Unbuffered Aligned Direct 10
operations into computer memory.

B \

Send S bytes of data file D starting from offset Send Sp, bytes of data file D from the |
|O - O] in the computer memory containing the computer memory containing the read bytes :
read bytes to client as a valid response to Gp. to client as a valid response 1o Gp, ‘

S81
End "

FI1G. 16

U.S. Patent

Jan. 19, 2016 Sheet 17 of 17

Start ~
S90

S91

US 9,239,855 B2

Input: GET request Gp, for virtual derived data file
D,. The GET request can be one of two types:
U GET byte-range request from offset O; of size
S;, where 0 <O;< Spjand 0 < O;+S; < Sp;or
O GET request for the entire file D, of size Sp;.

l

592

Validate request (Syntax, Security, etc.)

|

l

-S04

{

Compute size Sp; of virtual derived data file D;

|

f

B 893
Load Py, for data file D and validate availability of D;

595

Validate O; and S; against Sp;so 0 < O; < Spjand 0 < (O/+S)) < Sy

L

Isita GET
Byte-Range

Yes

I

S97
%j and Oj =07

— Yes
$98 No
_——"Can Dy be partially No
generated?
S99 Ves

y

5101

/

Generate partial data of S; bytes from virtual offset O; for
virtual file D by reading some or all bytes from physical
file D, in computer memory. If D; was a physical data file,
these S; bytes would have started from offset O;.

Generate virtual file D; by reading
some or all bytes from physical file
D in computer memory

Send S; bytes of data file Dj to the
client as a valid response to Gp.

Send §; bytes of virtual file D; from offset O; within the
computer memory containing the generated bytes to the
client as a valid response to Gp.

S102

st/ |

End

F1G. 17

-5103

US 9,239,855 B2

1
METHOD AND SYSTEM OF RETRIEVING
DATA IN A DATA FILE

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present Application is based on and claims priority to
U.S. Provisional Application No. 61/733,228 filed on Dec. 4,
2012, the entire contents of which is incorporated herein by
reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention pertains to data storage and retrieval,
and in particular to a method and system of storing a client
provided data file along with an associated data file virtual-
ization policy for retrieval; and a method and system for the
retrieval of data from the client provided data file.

2. Discussion of Related Art

Interchange of computer data using a client program and a
server program is a well-known technology. A client program
communicates with a server program using a communication
protocol over a network, for example a LAN, WAN or the
Internet. Examples of a communication protocol are TCP,
UDP, HTTP, HTTPS, socket-based communication, HTTP
1.1 WebDAV. A client program sends a request for data to a
server program. Based on that request the server program
sends data to the client program in response to the request.

The client program and the server program may be running
onthe same computer or on separate computers. For example,
a client program may be running on a client computer while a
server program may be running a server computer. The server
computer may be a computer system having one or more
processors. However, the client program and the server pro-
gram may also be running on the same computer system. In
addition, a client program may be running on one or more
computers. Similarly, a server program may be running on
one or more computers. The computers running client pro-
grams and server programs are connected to each other in
some form over the network.

Server and client programs follow some type of commu-
nication protocol to be able to understand each other. One
such method is when a client side asks a server side about its
capabilities. The server side then responds to the client side
with a list of services it offers. The client may utilize those
services to fulfill its goals by making additional requests to
the server.

A client program includes a set of one or more computer
programs. A server program includes a set of one or more
computer programs.

The HTTP protocol is popular and a well-known standard
over a computer network, for example LAN, WAN and the
Internet or the World Wide Web (WWW). A current HTTP
protocol version is HTTP 1.1 and is described in the Internet
Engineering Task Force Specification IETF RFC 2616. An
extension to the HTTP 1.1 protocol is HTTP 1.1 WebDAV.
This protocol is described in IETF RFC 4918.

The HTTP 1.1 WebDAV protocol in its simplest form
allows a computer to read from and write to web resources on
a remote storage device using the WWW. A web resource can
be a file or a one or more files. The protocol also supports the
equivalent of hierarchical folder listings, file and folder meta-
data reporting, file and folder deleting and such features that
existing Portable Operating System Interface (POSIX)-based
file systems offer over the WWW, using this protocol. In
addition, the protocol also supports file versioning over the

10

15

20

25

30

35

40

45

50

55

60

65

2

WWW. The protocol allows for client programs to connect to
remote storage solutions over the WWW and provision data at
the remote location as if it were a network mounted POSIX
file system.

For example, the HTTP protocol supports the OPTIONS
request. It allows the server to provide a list of WebDAV
commands that it supports and how the commands are sup-
ported. The WebDAV protocol requires the implementation
of' some requests. The implementation of other or additional
WebDAV requests is optional. The PROPFIND request in
WebDAV is used to retrieve properties and metadata from a
resource. It is equivalent to getting properties and metadata
about a file and getting a hierarchical directory or folder list.
The MKCOL request in WebDAYV is used to create collec-
tions, for example a collection could be a directory or folder.
The GET request in WebDAYV is used to retrieve a complete or
partial resource, for example a file, from a remote location on
the WWW. The PUT request in WebDAV is used to store a
complete or partial resource, for example a file, from a remote
location onthe WWW. The COPY requestin WebDAV dupli-
cates a resource, for example a file. Details regarding the
various requests that can be implemented in WebDAV can be
found in the IETF RFC 4918 specification.

On a POSIX-based file system, there are various tech-
niques and methods available for reading and writing files.
One of these methods is synchronous or asynchronous unbuf-
fered direct I/O.

Synchronous I/O implies that if a program issues a POSIX
request to read or write, the control is returned to the program
once the request is completed successfully or unsuccessfully
and not before that. Asynchronous I/O implies that as soon as
aprogram issues a POSIX request to read or write, the control
is returned to the program. The actual read or write operation
is completed at a later time and at that time the program that
originally issued the write operation request is alerted regard-
ing the completion status of the write operation.

Unbuffered Direct /O implies that if a program issues a
POSIX request to read or write, the operating systems does
not do anything besides reading the data from storage into
memory or writing the data from memory to storage. It does
not perform caching of any sort.

Synchronous or asynchronous unbuffered direct /O has
constraints imposed by file system implementations. Some
file systems permit a single I/O request of this type to be no
larger than a certain number of bytes. For example, in certain
versions of the Microsoft® Windows® operating system, a
single direct I/O read request can be no larger than approxi-
mately 64 Megabytes. A read or write operation operates on a
file starting from a specific offset and is of a specific size in
bytes. Most file systems require that a single I/O request of
this type be made starting at an offset and of a size that are an
integer multiple of the storage device block size. For example,
a storage device block size may be 512 bytes or 4096 bytes.
Most operating systems also require that the computer
memory allocated for such an operation begin and end at an
operating system memory page boundary, for example, begin
and end at operating system memory page boundary of 4096
bytes.

Popular WebDAV implementations generally utilize some
form of buffered I/O. These implementations also utilize pub-
lished or invented caching techniques to further improve per-
formance. Caching methods are intended to improve aggre-
gate performance based on pattern of access.

BRIEF SUMMARY OF THE INVENTION

An aspect of the present invention is to provide a method,
implemented by a computer system, for storing data files. The

US 9,239,855 B2

3

method includes receiving, by the computer system, a first
data file and a first data file virtualization policy; associating,
by the computer system, the first data file with the first data
file virtualization policy; and storing, by the computer sys-
tem, the first data file and the first data file virtualization
policy on a storage device in communication with the com-
puter system.

Another aspect of the present invention is to provide a
method, implemented by a computer system, for retrieving at
least a portion of a first data file stored in a storage device in
communication with the computer system. The method
includes receiving, by the computer system from a client
computer system in communication with the computer sys-
tem, a request for the at least a portion of the first data file, the
request including a start of the at least a portion of the first data
file and a size of the at least a portion of the first data file;
computing, by the computer system, a data offset that is
aligned to an integer multiple of a block size of the storage
device and nearest to the start of the at least a portion of the
first data file; and computing, by the computer system, a
byte-range that is an integer multiple of the block size of the
storage device, the byte-range being greater than and encom-
passes the size of the at least a portion of the first data file. The
method further includes reading, by the computer system,
data within the byte-range and transferring the data within the
byte-range starting at the data offset into memory of the
computer system; and transmitting, by the computer system
to the client computer system, the at least a portion of the first
data file from the memory starting at an offset relative to the
data offset that is aligned to an integer multiple of the block
size of the storage device.

A further aspect of the present invention is to provide a
system for storing data files. The system includes a computer
system configured to: receive a first data file and a first data
file virtualization policy; associate the first data file with the
first data file virtualization policy; and store the first data file
and the first data file virtualization policy on a storage device
in communication with the computer system.

Another aspect of the present invention is to provide a
system for retrieving at least a portion of a first data file stored
in a storage device in communication with a computer sys-
tem. The computer system is configured to: receive from a
client computer system in communication with the computer
system, a request for the at least a portion of the first data file,
the request including a start of the at least a portion of the first
data file and a size of the at least a portion of the first data file;
compute a data offset that is aligned to an integer multiple of
ablock size of the storage device and nearest to the start of the
at least a portion of the first data file; and compute a byte-
range that is an integer multiple of the block size of the storage
device, the byte-range being greater than and encompasses
the size of the at least a portion of the first data file. The
computer system is further configured to read data within the
byte-range and transferring the data within the byte-range
starting at the data offset into memory of the computer sys-
tem; and transmit to a client computer system the at least a
portion of the first data file from the memory starting at an
offset relative to the data offset that is aligned to an integer
multiple of the block size of the storage device.

Another aspect of the present invention is to provide a
method, implemented by a client computer system, of
requesting information from a server computer system. The
method includes sending, by the client computer system to
the server computer system, a request for policy capability of
the server computer system for a data type; receiving, by the
client computer system from the server computer system, a
response to the request including a list of derived data types

10

15

20

25

30

35

40

45

50

55

60

65

4

that are supported by the server computer system; generating,
by the client computer system, a policy using the list of
derived data types; and sending, by the client computer sys-
tem to the server computer system, a first data file and a first
data file virtualization policy for storage.

Another aspect of the present invention is to provide a
system having a client computer system. The client computer
system is configured to send to a server computer system in
communication with the client computer system a request for
policy capability of the server computer system for a data
type; receive a response to the request including a list of
derived data types that are supported by the server computer
system; generate a policy using the list of derived data types;
and send a first data file and a first data file virtualization
policy for storage.

A further aspect of the present invention is to provide a
method for retrieving at least a portion of a second derived
virtual data file, the second derived virtual data file being
derived from a first data file based on a first data file virtual-
ization policy, the method being implemented by a computer
system, the first data file being stored in a storage device in
communication with the computer system. The method
includes receiving, by the computer system from a client
computer system in communication with the computer sys-
tem, a request for the at least a portion of the second derived
virtual data file, the request including a virtual offset of the at
least a portion of the second derived virtual data file and a size
of'the at least a portion of the second derived virtual data file;
computing, by the computer system, a data offset and a size of
at least a portion of the first data file to derive the requested at
least a portion of the second derived virtual data file; reading,
by the computer system, data from the first data file based on
the computed data offset and size of the at least a portion of
the first data file; generating, by the computer system, the
requested at least a portion of the second derived data file
using information in the first data file virtualization policy and
the read data from the first data file; and transmitting, by the
computer system to the client computer system, the requested
at least a portion of the second derived virtual data file.

Another aspect of the present invention is to provide a
system for retrieving at least a portion of a second derived
data file, the second derived virtual data file being derived
from a first data file based on a first data file virtualization
policy, the first data file being stored in a storage device in
communication with a computer system. The computer sys-
tem is configured to: receive from a client computer system in
communication with the computer system, a request for the at
least a portion of the second derived virtual data file, the
request including a virtual offset of the at least a portion of the
second derived virtual data file and a size of the at least a
portion of the second derived virtual data file; compute a data
offset and a size of at least a portion of the first data file to
derive the requested at least a portion of the second derived
virtual data file; read data from the first data file based on the
computed data offset and size of the at least a portion of the
first data file; generate the requested at least a portion of the
second derived data file using information in the first data file
virtualization policy and the read data from the first data file;
and transmit to the client computer system the requested at
least a portion of the second derived virtual data file.

Although the various steps of the method are described in
the above paragraphs as occurring in a certain order, the
present application is not bound by the order in which the
various steps occur. In fact, in alternative embodiments, the
various steps can be executed in an order different from the
order described above or otherwise herein.

US 9,239,855 B2

5

These and other objects, features, and characteristics of the
present invention, as well as the methods of operation and
functions of the related elements of structure and the combi-
nation of parts and economies of manufacture, will become
more apparent upon consideration of the following descrip-
tion and the appended claims with reference to the accompa-
nying drawings, all of which form a part of this specification,
wherein like reference numerals designate corresponding
parts in the various figures. In one embodiment of the inven-
tion, the structural components illustrated herein are drawn to
scale. It is to be expressly understood, however, that the
drawings are for the purpose of illustration and description
only and are not intended as a definition of the limits of the
invention. As used in the specification and in the claims, the
singular form of “a”, “an”, and “the” include plural referents
unless the context clearly dictates otherwise.

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings:

FIG. 1 depicts a client program making a request to a server
program, and a server program responding to the client pro-
gram with a response to that request over a computer network
using the HTTP 1.1 WebDAV specification;

FIG. 2 depicts a general client-server application work-
flow;

FIG. 3 depicts the workflow of a client program reading a
data file and a data file virtualization policy, sending the data
file to a server program over a network such as a LAN or the
Internet, and the server storing the data file and the data file
virtualization policy on to a storage device, according to an
embodiment of the present invention;

FIG. 4 depicts a flowchart showing how a client program
uploads a data file and a data file virtualization policy to a
server program, according to an embodiment of the present
invention;

FIG. 5 depicts a workflow of a client requesting for a list of
supported virtualization data types for a given data type from
a server, according to an embodiment of the present inven-
tion;

FIG. 6 depicts the workflow of a client uploading a first
data file and a first data file virtualization policy to a server,
according to an embodiment of the present invention;

FIG. 7 depicts a first data file virtualization policy P, for a
first data file D that expresses a client program’s intent to
access a sequence of N virtual derived data files D, to D,,
where N>0, according to an embodiment of the present inven-
tion;

FIG. 8 depicts an example of a first data file virtualization
policy for storing a first data file of data type Point Cloud
LiDAR, and depicts how that policy results in the client
eventually being able to access the first data file and a one or
more virtual derived data files from the server, according to an
embodiment of the present invention;

FIG. 9 depicts an example of a first data file virtualization
policy for storing a first data file of data type JP2 from a
Wide-Area Motion Imagery (WAMI) frame, and depicts how
that policy results in the client eventually being able to access
the first data file and a one or more virtual derived data files
from the server, according to an embodiment of the present
invention;

FIG. 10 depicts the workflow of a server program taking a
one or more first data files and corresponding first data file
virtualization policies and storing them to a storage device,
according to an embodiment of the present invention;

FIG. 11 depicts the workflow of a server program imple-
menting a PROPFIND request in HTTP 1.1 WebDAV and

20

25

35

40

45

55

65

6

presenting a directory listing of a first data file and a one or
more virtual derived data files that were presented based on a
first data file virtualization policy corresponding to the first
data file, according to an embodiment of the present inven-
tion;

FIG. 12 depicts the workflow of a server program imple-
menting a HITP HEAD request for information on either a
first data file or any corresponding virtual derived data file,
according to an embodiment of the present invention;

FIG. 13 depicts the workflow of a server program imple-
menting a HTTP GET request for downloading data from
either a first data file or any corresponding virtual derived data
file, according to an embodiment of the present invention;

FIG. 14 depicts a flowchart of a server program implement-
ing a PROPFIND requestin HT'TP 1.1 WebDAV, according to
an embodiment of the present invention;

FIG. 15 depicts a schematic of an unbuffered aligned direct
1/O operation on a first data file as implemented by a server
program to fulfill a HTTP GET request, according to an
embodiment of the present invention;

FIG. 16 depicts a flowchart of a server program implement-
ing a HTTP GET request for reading whole or part of a first
data file using one or more unbuffered aligned direct 1/O
operations, according to an embodiment of the present inven-
tion; and

FIG. 17 depicts a flowchart of a server program implement-
ing a HTTP GET request for reading whole or part of a second
virtual derived data file using one or more unbuffered aligned
direct I/O operations on a first data file and using a first data
file virtualization policy, according to an embodiment of the
present invention.

DETAILED DESCRIPTION OF EMBODIMENTS
OF THE INVENTION

A data file is defined as one or more bytes that exist in
computer memory or on a computer storage device, such as a
hard disk or a clustered storage device. A data file can be
exposed to a computer program via a well-known interface,
for example, an Object Storage Solution interface, or a
POSIX file-system interface. One or more data files are
referred herein as a collection of data files. The symbol D is
used herein to indicate the collection of data files.

A data file that is physically stored on a storage device is
referred to as a first data file. A data file that is virtually
presented to a consumer as if it were stored on a storage
device but is not actually stored on a storage device, and is
derived from the first data file, is referred to herein as a second
virtual derived data file, and also referred to as a second
derived data file, or a second derived virtual data file, or a
second virtual data file, or a derived data file, or a virtual data
file.

A data type describes the byte-layout and type of data
stored in a data file. For example, Point Cloud LiDAR data is
stored in data files of a well-known file format named LAS.
Therefore, a Collection of LAS Data Files containing Point
Cloud LiDAR data are of data type Point Cloud LiDAR LAS.
For example, Wide-Area Motion Imagery (WAMI) data is
stored in data files of a well-known file format named
GeolP2. Therefore, a Collection of GeoJP2 Data Files con-
taining WAMI data are of data type WAMI GeoJP2. For
example, Live-Action Motion Picture frames captured at 24
or 48 frames per second is stored in data files of a well-known
file format named OpenEXR. Therefore a Collection of
OpenEXR Data Files, each data file including one live-action

US 9,239,855 B2

7

motion picture frame are of data type Live-Action Motion
Picture OpenEXR. The symbol T, refers to the data type of a
collection of data files D.

FIG. 1 depicts a client program making a conventional
HTTP 1.1 WebDAV request to a server program and the
server responding with a HTTP 1.1 WebDAV response com-
prising in-part of the data requested by the client program.
With reference to an embodiment of the present invention, a
client program can also be a computer program that requests
a server program to store data. In that case, a server program
is a computer program that fulfills the request to store data
from a client program and sends an appropriate response to
the client program. A client program can also be a computer
program that requests for data and consumes it for a purpose.
In that case, a server program is a computer program that
provisions that data to the client program.

The various methods described herein depict multiple
workflows. A workflow is a diagram that depicts primary
phases of an operation, or a sequence of connected steps in an
operation. An example of a conventional circular workflow is
depicted in FIG. 2. In this example, a client program gener-
ates a request for a server program and sends it to the server
program over a computer network. The server program
receives the request, processes the request and generates a
response. The response is sent by the server program back to
the client program over a computer network. The client pro-
gram receives the response. The cycle continues.

FIG. 3 depicts the workflow of a client program reading a
data file and a data file virtualization policy, sending the data
file to a server program over a network such as a LAN or the
Internet, and the server storing the data file and the data file
virtualization policy on to a storage device, according to an
embodiment of the present invention.

In one embodiment, for example, a client program entrusts
a server program with a first data file D that is of a known data
type Tp,. The goal for the client is to access the first data file D
at a future time. A client program may also have to access
additional data of same or different data types that are derived
from D at a future time. [fthe server program does not provide
for such derived data or provide the ability to create such
derived data, the client program would have to look for alter-
native services. If such services are not available, the client
program has to generate the derived data by itself. In the
following paragraphs, a method for storing and retrieving
data files on a storage device is described.

In one embodiment, the method allows for defining a data
file virtualization policy that provides a client program with
the ability to send the client program’s intent to access the
data stored in a first data file, as well as an intent of the client
program to access data files of other data types that are
derived from the first data file.

A data file virtualization policy is defined as the intent, by
a client program, of accessing a first data file D, as well, as
derived datafiles D, D, ... D,. One or more derived data files
D,, D, ... D, are derived from the first data file D, and are
virtual. The term virtual implies that one or more data files
D, ,donotphysically exist on a storage device. The term
virtual further implies that a directory listing of data files
D, ,isavailable to the client program. The client program
believes that data files exist on the server side storage device.
The term virtual further implies that a derived data file D,
(where, 1=<J=N) is generated by the server program by read-
ing the first data file D wholly or partially, dynamically,
on-demand, when a client requests for that specific derived
data file. A data file virtualization policy is denoted herein as
PyorPy) Aclientprogram sends a first data file D (i.e.,
one or more first data files D) to a server program accompa-

10

15

20

25

30

35

40

45

50

55

60

65

8

nied by a virtualization policy P, that corresponds to each
first data file D in the one or more data files D. The one or more
data files D are of the same data type T,

When a server program receives one or more first data files
and P, from a client program, the server program takes the
one or more first data files and P, and stores it on a storage
device. Using either a database or a known structure or pro-
tocol, it associates the one or more first data files with P,,. For
example, a known protocol would be for the server to save the
one or more first data files and P, into the same server-side
storage folder and append a server-generated UUID for each
file in the one or more first data files, into P,. In this example,
a first data file D would be one of the files in the one or more
first data files.

FIG. 3 depicts a client program sending to a server pro-
gram, a first data file D and an associated first data file virtu-
alization policy P, ,Using a computer network, accord-
ing to an embodiment of the present invention. The diagram
further depicts the server receiving data file D and data file
virtualization policy P, nyandsavingDand P, to
astorage device. D can be one data file of datatype T, oritcan
be more than one data files of the same data type Tp,.

A client program does not know what derived data types
are supported by a server program for a data file of data type
Tp. Therefore, a client program may request a server program
to send back a list of supported derived data types. The client
program may also request a list of supported parameters for
each supported derived data type. The parameters allow a
client program to control the output of the derived data that
will be subsequently generated on-demand by the server pro-
gram. Once the list of supported parameters is known, a client
program can announce its intent to request for all supported
derived data types or only a subset of supported derived data
types, at a future time.

FIG. 4 depicts a flowchart showing how a client program
uploads a data file and a data file virtualization policy to a
server program, according to an embodiment of the present
invention. As shown in FIG. 4, a client program starts at S10.
At 812, the client program sends a request to a server over a
computer network using a well-established protocol, for
example RESTful HTTP or RESTful HTTPS. The request
includes requesting server program’s Policy Capabilities
(PC) for a data type T, as provided by a client. At S14, the
client program receives a response from the server program.
The response includes a list of derived data types that are
supported by the server program. For each derived data type,
the server program may also provide a list of parameters used
to control the derived data file content that would eventually
be generated should the client program later ask for a derived
data file. In one embodiment, a client program may choose to
save this response locally to avoid making such a request
again. At S16, the client program prepares a policy P, reveal-
ing the client program’s intent to access one or more derived
datafiles D, ... N of a one or more data types, at a future time.
At S18, the client program sends or transmits P, to a server
program over the computer network using a well-established
protocol, for example RESTful HTTP or HTTPS. At S20, the
client program sends a data stream of the data file D (i.e.,
streams data D) to the server program that was just sent Pp,.
The method ends at S22. The client program may also choose
to send P, and D in the same request.

FIG. 5 is a workflow diagram of the part of the embodiment
of'the invention where a client program 10 makes a request 11
to a server program 12 over a computer network such as a
LAN or the Internet 14, using a well-established, mutually
understood protocol such as RESTful HTTP or HTTPS,
according to an embodiment of the present invention. The

US 9,239,855 B2

9

request 11 includes asking for the capabilities of a Policy
Capability (PC) server program 12 for a specific data type T ,.
The server program 12 receives this request 11 and prepares
a response 13. The response 13 comprises a list of derived
data virtualization policies for T, and parameters for each
derived data type. The server program 12 sends the response
13 to the client program 10 over a computer network 15 such
as a LAN or the Internet, using a well-established, mutually
understood protocol such as RESTful HTTP or HTTPS. Net-
work 15 can be the same as or different from network 14.

FIG. 6 is a workflow diagram of the part of the embodiment
of'the invention where a client program 20 transfers a data file
D and a data file virtualization policy P, to a server program
22 over a computer network such as a LAN or the Internet 24,
using a well-established, mutually understood protocol such
as RESTful HTTP or HTTPS, according to an embodiment of
the present invention. As shown in FIG. 6, the client program
20 sends arequest 21 to the server 22. In one embodiment, the
client program 20 sends request 21 by transferring the P,,, and
one or more data files, such that P, is associated with each
data file D to server 22. If D is one data file, there is a
one-to-one relationship between P, and D, where P, is the
data file virtualization policy for D. If D comprises a plurality
of data files, there is a one-to-many relationship between P,
and D, where P, is the data file virtualization policy for each
data file D of the plurality of data files. The server program
specializes in the ingestion of D and P,,. The ingest server
program 22 receives the request 21 and stores D and P,,. The
server 22 transfers D and P, to a storage device 26. For each
data file D in the one or more data files, the ingest server
program 22 prepares a unique identifier, for example a UUID,
or a URI, as part of the response to the client program 20, to
identify a data file D and its associated policy P,,. The iden-
tifier is referred to herein as I,. The ingest server program 22
transmits that information as part of'a response 23 to the client
program 20 using over a computer network 25 such as a LAN
or the Internet, using a well-established, mutually understood
protocol such as RESTful HTTP or HTTPS. The client
receives this response and the cycle of data transfer continues.
The network 25 can be the same as or different from network
24.

FIG. 7 depicts a first data file virtualization policy P, for a
first data file D that expresses a client program’s intent to
access a sequence of N virtual derived data files D, to D,,
where N>0, according to an embodiment of the present inven-
tion. A data file virtualization policy is represented by the
symbol P,,. One P, applies to one first data file D. One P, can
also apply to a one or more first data files. A P, includes a set
of hierarchical properties, and can be represented in a stan-
dard format, for example XML, JSON, or NetCDF for trans-
mission over a computer network.

As shown in FIG. 7 apolicy P, 30 for a first data file D may
include at least the following items:

1. The name of the first data file D

2. The data type T, of the first data file D

3. A Boolean flag set to either True or False, where True
indicates intent of client program 20 to request for derived
data

4. A list of derived data types that the client program 20

intends to retrieve, in addition to data file D
5. For each derived data type, the client program 20 has a list

of parameters that the server program 22 supports for con-

figuring and controlling the content for a derived data file.

This list can be obtained by the client via a prior request to

a PC server program 12. The client 20 provides a list of

parameters or configuration attributes to control the con-

tent of the derived data type. As an example, such a list of

30

35

40

45

55

60

10

parameters may include other data files that may also con-

tribute to the generation of the associated derived data file.

As another example, such a list of parameters may include

on-off flags, optional or required values that contribute to

the generation of the associated derived data file.

As shown in FIG. 7, a policy P, for a first data file D 30 is
interpreted by a server program 22 that disseminates data files
to any interested and permitted client program 20. The server
program 22 has a policy P, for a first data file D. The policy
P, indicates the intent ofa client program 20 to access derived
datafiles D, 5. The server program 22 shows to the client
program 20, a list including the first data file D, its size S,
and additional information about the file D. If P, indicates the
intent for additional derived data files D, ,, then the server
program 22 also shows additional N file entries. Each data file
entry is virtual starting from file D, D,,, up to D, This means,
the data files D,, D,, up to D, do not exist on the storage
device 26. When asked for, they are generated on-demand,
dynamically. The Primary Data Stream from Data File D of
size S, and of data type T, is shown by the server program 22
in the directory listing 32 generated using information about
D and information provided in P, 30. If P,, also indicates the
client program’s 20 intent to use derived virtual data files
D, A, the server program 22 generates N additional direc-
tory entries for dynamically generated virtual derived data file
D, 34, dynamically generated virtual derived data file D, 36,
up to and including dynamically generated virtual derived
data file D,, 38.

FIG. 8 depicts an example of a first data file virtualization
policy for storing a first data file of data type Point Cloud
LiDAR, and depicts how that policy results in the client
eventually being able to access the first data file and a one or
more virtual derived data files from the server, according to an
embodiment of the present invention. FIG. 8 shows an
example of a policy P,, 40 applied to a data file D of data type
T, of Point Cloud LiDAR LAS. P, applies to data file D,
named FILENAME.1000.LAS. P, can be in any known for-
mat, for example XML or JSON. The policy specifies that it
applies to data file D of name FILENAME.1000.LAS. It
specifies that itis of data type Point Cloud LiDAR. It specifies
that the format of the data file is LAS version 1.3. It specifies
that the client intends to access additional derived virtual data
types. It lists the first derived virtual data type to be a Reduced
Resolution Point Cloud. A set of parameters may be provided
to define how the Reduced Resolution Point Cloud is to be
generated. Subsequent entries describe additional virtual
derived data types that the client intends to access. In a sub-
sequent HTTP 1.1 WebDAV PROPFIND request, the server
program 22 shows to the client program 20, a directory listing
42 including the primary first data file D, which is
FILENAME.1000.LAS. In addition, the server 22 also shows
to the client program 20, an additional three virtual derived

data files. These three data files are named
FILENAME.1000.R-SET.LAS,
FILENAME.1000. METADATA . XML, and

FILENAME.1000.DEM.TIF. These files do not exist on the
server-side storage device 26. If the client program 20
requests any one of the three derived data files using a sub-
sequent HTTP GET, for example HTTP 1.1 GET and HTTP
1.1 WebDAV GET request, the server program 22 generates
the files on-demand, dynamically, using data stored in
FILENAME.1000.LAS and P, 50.

FIG. 9 depicts an example of a first data file virtualization
policy for storing a first data file of data type WAMI Frame,
and depicts how that policy results in the client eventually
being able to access the first data file and a one or more virtual
derived data files from the server, according to an embodi-

US 9,239,855 B2

11
ment of the present invention. FIG. 9 shows an example of a
policy P, 50 applied to a data file D of data type T, of WAMI
Frame. P, applies to data file D, named
MISSIONNAME.001000.JP2. P, can be in any known for-
mat, for example XML or JSON. The policy specifies that it
applies to data file D of name MISSIONNAME.001000.JP2.
Itspecifies that it is of data type WAMI Frame. It specifies that
the format of the data file is GeoJP2. It specifies the image and
tile pixel sizes, and compression ratio. It specifies that the
client intends to access additional derived virtual data types.
It lists the first derived virtual data type to be a Reduced
Resolution Dataset-1. A set of parameters may be provided to
define how the Reduced Resolution Dataset is to be gener-
ated, for example for Reduced Resolution Dataset-1, the data
format is to be GeolP2, its pixel width and height are both to
be 4800, its compression ratio is to be 15, with the client
program expressing its intent to access the data. Subsequent
entries describe additional virtual derived data types that the
client intends to access. In a subsequent HT'TP 1.1 WebDAV
PROPFIND request, the server program 22 shows to the
client program 20, a directory listing 52 including the primary
first data file D, which is MISSIONNAME.001000.JP2. In
addition, the server 22 also shows to the client program 20, an
additional three virtual derived data files. These three data
files are named MISSIONNAME.001000.R-SET1.JP2,
MISSIONNAME.001000.R-SET2.JP2, and
MISSIONNAME.001000.METADATA XML. These files do
not exist on the server-side storage device 26. If the client
program 20 requests any one of the three derived data files
using a subsequent HTTP GET request, the server program

10

15

20

25

30

12

22 generates the files on-demand, dynamically, using data
stored in MISSIONNAME.001000.JP2 and P, 50.

An example of a RESTful HTTP GET request to obtain a
list of PC for a T, of Point Cloud LiDAR LAS files is pro-
vided below, as described above with respect to FIG. 4, FIG.
5, and FIG. 8.

http://example.com/hefs-pe-server?SERVICE=
HiPERCloudFS&VERSION=1.0.0&REQUEST=
GetPolicyCapabilities&DataType=PC-LiDAR-LAS&FORMAT=text/xml

An example of a RESTful HTTP POST request to obtain a
list of PC for a T, of Point Cloud LiDAR LAS files is pro-
vided below, as described above with respect to FIG. 4, FIG.
5, and FIG. 8. The value of length is the number of bytes of
subsequent data in the HTTP request.

POST /hefs-pe-server HTTP/1.1

Host: example.com

Content-Type: text/xml; charset=utf-8

Content-Length: length

<?xml version="1.0" encoding="utf-8"?>

<hefs:GetPolicyCapabilities xmlns:hefs="http://www.example.com/hcfs"”
service="HiPERCloudFS” version="1.0.0" dataType="PC-LiDAR-LAS”
format="text/xml”/>

Based on the prior example of an HTTP GET or POST
request of GetPolicyCapabilities, an example of a response
from the server program 22 is provided below. Such a
response is dependent on the specification for communication
between a client program 20 and the server program 22.

<?xml version="1.0" encoding="utf-8” 7>
<hefs:PolicyCapabilities xmlns:hefs="http://www.example.com/hcfs”
version="1.0.0">

<hefs:SupportedPolicy name=“PC-LiDAR-LAS”>

<hefs:Parameter name="Policy”>

<hefs:Attribute name="derivedDataAccessIntent”>
<hefs:AllowedValues™>
<hefs:Value>True</hefs:Value>
<hefs:Value>False</hefs:Value>
</hefs:Allowed Values™>
</hefs: Attribute™>
<hefs:Attribute name="dataTypeName”>
<hefs:AllowedValues™>
<hefs:Value>Point Cloud LiDAR</hcfs:Value>
<hefs:Value>PC LiDAR</hcfs:Value>
<hefs:Value>LiDAR Point Cloud</hefs:Value>
</hefs:Allowed Values™>
</hefs: Attribute™>
<hefs:Attribute name="fileCount” />
<hefs:Attribute name="format™>
<hefs:AllowedValues™>
<hefs:Value>application/x-las-10</hefs: Value>
<hefs:Value>application/x-las-11</hefs: Value>
<hefs:Value>application/x-las-12</hefs: Value>
<hefs:Value>application/x-las-13</hefs: Value>
</hefs:Allowed Values™>
</hefs: Attribute™>
<hefs:Parameter name="filename” />

</hcfs:Parameter>
<hefs:DerivedDataTypes>

<hefs:DataType name="Metadata”>
<hefs:Parameter name=“DerivedData”>
<hefs:Attribute name="dataTypeName”>
<hefs:Allowed Values™>
<hefs:Value>Metadata</hefs:Value>
</hefs:Allowed Values>
</hefs:Attribute>
<hefs:Attribute name="format™>
<hefs:Allowed Values™>
<hefs:Value>text/xml</hcfs:Value>
<hefs:Value>application/json</hcfs:Value>

US 9,239,855 B2

13

-continued

14

</hefs:Allowed Values>
</hefs:Attribute>
<hefs:Attribute name="schemaHint”>
<hefs:Allowed Values™>

<hefs:Value>OGC SensorML v1.0.1</hefs:Value>

<hefs:Value>Something else</hcfs:Value>

</hefs:Allowed Values>
</hefs:Attribute>

<hefs:Attribute name="derivedDataAccessIntent”>
<hefs:Allowed Values defaultValue="True”>

<hefs: Value>True</hefs:Value>
<hcfs: Value>False</hcfs:Value>
</hefs:Allowed Values>
</hefs:Attribute>
</hefs:Parameter>
</hefs:DataType>
<hefs:DataType name=“RRD for Point Cloud LiDAR”>
<!-- information about this data type -->
</hefs:DataType>
<hefs:DataType name=“"DEM”>
<!-- information about this data type -->
</hefs:DataType>
</hefs:DerivedDataTypes>
</hefs:SupportedPolicy>
</hefs:PolicyCapabilities™>

An example of a RESTful HTTP POST request to send P,
to the data storage server program is provided below, as
described above with respect to FIG. 4, FIG. 5, and FIG. 8.
The service may return a policy identifier UUID to permit
subsequent data file D uploads that are linked to this policy.

POST /hefs-ingest-server HTTP/1.1
Host: example.com
Content-Type: text/xml; charset=utf-8
Content-Length: length
<?xml version="1.0" encoding="utf-8"?>
<hefs:PutPolicy xmlns:hefs="“http://www.example.com/hefs”
service="HiPERCloudFS” version="1.0.0" dataType="“PC-LiDAR-LAS”
format="text/xm!”>
<hefs:Policy
dataTypeName="Point Cloud LiDAR”
format="application/x-las-13”
fileCount=*12"
derivedDataAccessIntent="True"”>
<hefs:filename>filename.1000.las</hcfs: filename>
<hefs:filename>filename.1001.las</hcfs: filename>
<hefs:filename>filename.1002.las</hcfs: filename>
<hefs:filename>filename.1003.las</hcfs: filename>
<hefs:filename>filename.1004.las</hcfs: filename>
<hefs:filename>filename.1005.las</hcfs: filename>
<hefs:filename>filename.1006.las</hcfs: filename>
<hefs:filename>filename.1007.las</hcfs: filename>
<hefs:filename>filename.1008.las</hcfs: filename>
<hefs:filename>filename.1009.las</hcfs: filename>
<hefs:filename>filename.1010.las</hcfs: filename>
<hefs:filename>filename.1011.las</hefs: filename>
<hefs:DerivedData
dataTypeName="Metadata”
format="text/xml”
schema="http://someurl/path”
schemaHint="OGC SensorML v1.0.1”
derivedDataAccessIntent="True”/>
<hefs:DerivedData
dataTypeName="RRD for Point Cloud LiDAR”
format="application/x-las-13”
maxPointsHint="*10000000"
maxMegabytesHint="5.0"
minRRDPercent=*50.0"
derivedDataAccessIntent="True”/>
<hefs:DerivedData
dataTypeName=“"DEM”
format="GeoTIFF”
gsd="0.5"
gsdUnits="meter”

25

30

35

40

45

50

55

60

-continued

crs="EPSG:4326”
compression="True”
compressionCodec=“Gzip”
tile="True”
tileWidth=1024"
tileHeight="1024"
codeValueDataType="{32"
derivedDataAccessIntent="True"/>
</hefs:Policy>
</hefs:PutPolicy>

An example of a RESTful HTTP POST request to send D
to the data storage server program is provided below, as
described above with respect to FIG. 4, FIG. 5, and FIG. 8.
The service could return a file identifier per file in D to permit
client-side data integrity management.

POST /hefs-ingest-server HTTP/1.1

Host: example.com

Content-Type: multipart/mixed, boundary=--XXX
Content-Length: length

XXX

Content-Type: text/xml; charset=utf-8

<?xml version="1.0" encoding="utf-8"?>

<hefs:PutData xmlns:hefs="http://www.example.com/hefs”
service="HiPERCloudFS” version="1.0.0" data
Type="PC-LiDAR-LAS” format="text/xml!” fileCount="12"
policyldentifier="3ff89845122e3cce4bbaadSab2a8b32”/>
XXX

Content-type: application/x-las-13
Content-Transfer-Encoding: binary

Content-Disposition: attachment; filename=filename.1000.las
Binary Data for filename.1000.1as

XXX
Content-type: application/x-las-13
Content-Transfer-Encoding: binary

Content-Disposition: attachment; filename=filename.1001.las
Binary Data for filename.1001.1as

An example of a RESTful HTTP POST request to send
both P, and D to the data storage server program is provided
below, as described above with respect to FIG. 4, FIG. 5, and

US 9,239,855 B2

15
FIG. 8, an. The service could return a file identifier for file D
to permit client-side data integrity management.

POST /hefs-ingest-server HTTP/1.1
Host: example.com
Content-Type: multipart/mixed, boundary=--XXX
Content-Length: length
XXX
Content-Type: text/xml; charset=utf-8
<?xml version="1.0" encoding="utf-8"?>
<hefs:PutPolicy AndData xmlns:hefs="http://www.example.com/hcfs"”
service="HiPERCloudFS” version="1.0.0" dataType="PC-LiDAR-LAS”
format=""application/x-las-13” fileCount="1" >
</hefs:PutPolicy AndData>
XXX
Content-type: text/xml; charset=utf-8
<?xml version="1.0" encoding="utf-8"?>
<hefs:Policy
xmlns:hefs="http://www.example.com/hcfs"”
dataTypeName="Point Cloud LiDAR"
format="application/x-las-13"
derivedDataAccessIntent=""True">
<hefs:filename>filename.1000.las</hcfs:filename>
<hefs:DerivedData
dataTypeName="RRD for Point Cloud LiDAR"
format="application/x-las-13"
maxPointsHint="10000000"
maxMegabytesHint="5.0"
minRRDPercent="50.0"
derivedDataAccessIntent=""True"/>
<hefs:DerivedData
dataTypeName="Metadata"
format="text/xml"
schema="http://someurl/path”
schemaHint="OGC SensorML v1.0.0"
derivedDataAccessIntent=""True"/>
<hefs:DerivedData
dataTypeName="DEM"
format="GeoTIFF"
gsd="0.5"
gsdUnits="meter"
crs="EPS(G:4326"
compression="True"
compressionCodec="Gzip"
tile="True"
tileWidth="1024"
tileHeight="1024"
codeValueDataType="{32"
derivedDataAccessIntent=""True"/>
</hefs:Policy>
XXX
Content-type: application/x-las-13
Content-Transfer-Encoding: binary
Content-Disposition: attachment; filename=filename.1000.las
Binary Data for filename.1000.1as

FIG. 10 depicts the workflow of server program 22 taking
one or more first data files and corresponding first data file
virtualization policies and storing them to storage device 26,
according to an embodiment of the present invention. As
shown in FIG. 10, the server program 22 ingests one or more
first data files D 60 into storage device 26. The server program
22 receives from the client program 20, a data virtualization
policy P, 62 and one or more first data files 60. In one
embodiment, the server program 22 stores the data virtual-
ization policy P, 62 on the storage device 26 as a logical
object, either as a file on the storage device 26 or as an object
on an object storage device (OSD), or as entries in a database.
The server program 22 associates each first data file D 60 in
the one or more first data files with the corresponding data
virtualization policy P, 62 as specified by the client program
20. The association is recorded on the storage device 26.

In one embodiment, the server program 22 provides a
service to any interested and permitted client program 20 to
get a directory listing of the first data file D 60, and a one or

10

15

20

25

30

35

40

45

50

55

60

65

16

more one or more derived virtual data files D, ,~ The total
number and type of derived virtual data files depends on the
intent of a client program to access the total number and type
of derived virtual data files, as specified in the data virtual-
ization policy P, 62, where P, 62 is associated with the first
data file D 60. The data file D 60 physically exists on the
server-side storage device 26. A one or more second derived
datafiles D, exist virtually on the server-side 26, i.e. the
one or more second derived data files D; ,, do not exist
physically as a sequence of bytes on the server-side storage
device 26, but the server program 22 presents to the client
program 20 that such files exist.

FIG. 11 depicts the workflow of server program 22 imple-
menting a PROPFIND request in HTTP 1.1 WebDAV and
presenting a directory listing of a first data file and one or
more virtual derived data files that are presented based on a
first data file virtualization policy corresponding to the first
data file, according to an embodiment of the present inven-
tion. As shown in the workflow diagram in FIG. 11, the server
program 22 provides an HTTP 1.1 WebDAV PROPFIND
service 70 to provide such a directory listing. The directory
list includes the first data file D 60 and a one or more virtual
derived data files D, ,,64. Thelistof D, . are derived
using information from a first data file virtualization policy
Py .. A 62 that is associated with data D 60.

FIG. 12 depicts the workflow of a server program imple-
menting a HEAD request in HTTP 1.1 WebDAV for informa-
tion on either a first data file or any corresponding virtual
derived data file, according to an embodiment of the present
invention. As shown in FIG. 12, the server program 22 fulfills
an HTTP HEAD, for example HTTP 1.1 WebDAV HEAD or
HTTP 1.1 HEAD request from the client program 20. At S30,
the server program 22 checks to see if the request was made
for the first data file D or for a derived data file D, from a one
ormore derived datafilesD; . Ifthe request was made for
D, the server prepares, at S32, a response for D and transmits
it, at S34, to the client program 20 over a computer network
25, for example, LAN or Internet. Hence, the client program
20 receives the response from the program server 22. If, on the
other hand, the request was made for D, it is known to the
server program 22 that D ,does not exist on the storage device
26. D, is a virtual derived data file, derived from D 60, and
based on P, ;; 62, which is the data virtualization policy for
the virtual derived data file D, from the overall data virtual-
ization policy P, 62 for data D 60. At S36, the server program
22 computes the size of D, using data from data D 60 and
policy Py, 62. Following computing the size of D, the
server 22 prepares a response for data D, at S38, and transmits
the response, at S39, to the client program 20 over a computer
network 27, for example, LAN or Internet. The network 27
can be the same as or different from the network 25.

FIG. 13 depicts the workflow of a server program imple-
menting an HTTP GET request, for example HTTP 1.1 Web-
DAV GET or HTTP 1.1 GET, for downloading data from
either a first data file or any corresponding virtual derived data
file, according to an embodiment of the present invention. As
shown in FIG. 13, the server program 22 fulfills an HTTP
GET request from the client program 20. The GET request
can be made by the client program 20 to read data from a data
file D 60 starting from file offset O, of S-bytes in size. The
server program 22 checks, at S40, to see if the request is made
for the first data file D 60 or for a derived data file D, from a
one or more derived data files D, . If the request is made
for data D 60, the server prepares, at S42, a response for data
D 60 and transmits the response, at S44, to the client program
20 over the computer network 25, for example, LAN or Inter-
net. To prepare the response, the server program 22 has the

US 9,239,855 B2

17

request from the client program 20 to retrieve data from data
D 60 starting from offset O, of size S. The size of the first data
file D 60 is S ;, bytes, where 0=O=S,, and 0<(O+8S)=<S,,. Using
these values, at S42, the server program 22 reads S bytes from
D, starting from offset O. The server program 22 prepares and
transmits the response, at S44, to the client program 20. The
client program 20 receives the response from the server pro-
gram 22. If the request is made for D, the server program 22
knows that D, does not exist on the storage device 26. D ;is a
virtual derived data file, derived from data file D 60. The
server program computes, at S46, the virtual size S, of D,
using data from the first data file D 60 and the data virtual-
ization policy Py, ;; 62, which is the data virtualization policy
for the virtual derived data file D, from the overall data vir-
tualization policy P, for data file D. Using information from
Py 62 and data from data D 60, the server program 22
computes, at S46, one or more offsets and sizes within data D
that are needed and sufficient to dynamically generate S vir-
tual bytes, starting from virtual offset O from the virtual
derived data file D. It may not be possible to compute what is
needed from data D 60 to generate D. In that case, all data is
read from data D 60. The server program 22 then reads the
desired data from data D 60 and generates, at S48, derived
data for D. The server program 22 then transmits, at S49, S
bytes for D, starting from offset O. The client program 20
receives the response from the server program 22.

FIG. 14 depicts a flowchart of a server program 22 imple-
menting a PROPFIND request in HTTP 1.1 WebDAYV,
according to an embodiment of the present invention. FIG. 14
is a flowchart of a method to implement the workflow shown
in FIG. 11. The PROPFIND request is implemented to get a
directory listing for a first data file D and a one or more virtual
derived data files D; . The method begins at S50. The
server program 22 receives an HTTP 1.1 WebDAV
PROPFIND request R, from client program 20, at S52. The
intention of the client program 20 is to discover a first data file
D, that the client program 20 had entrusted the server program
22. The PROPFIND request is made by the client program 20
requesting for a directory listing starting from the physical or
virtual folder containing D, or any prior folder, with appro-
priate DEPTH option specified. At S53, the server program 22
validates R, to verify that the request is syntactically and
semantically correct and that the requesting client 20 is per-
mitted to access the data. If successful, the method loads, at
S54, a first data file virtualization policy P, associated with
D. At S55, the method prepares a directory listing entry for D
as a response to the PROPFIND request R, (i.e., for file D, a
physical file entry is added in response for Rd), including the
pre-assigned name of a first data file D, the size S, (in bytes)
of data D, and any additional attributes of data D that are
permitted in a PROPFIND response for building a valid
PROPFIND response by the server program 22. At S56, the
method checks to see if the client 20 had expressed the intent
of requesting additional virtual derived data files (i.e., to
check whether derived data is requested in P,). If yes, the
method continues to S57. If no, the method continues to S62.
At S57, the method loops for each entry J, from one or more
entries 1to Nfrom Py, . Eachentry JinP,, ,,refers
to a virtual derived data file D, of a specific and defined data
type, as defined by the client program in a prior upload of P,,
and its association with D. For each entry J, the method
computes the size of a second derived data file D, at S58. At
S59, the method further computes the name and remaining
PROPFIND response attributes for D ,. The method then adds
a directory list entry for a second derived data file D, at S60.
The method then inquires if the end of derived data type list is
reached, at S61. Ifyes, the loop has come to its end, when J is

10

15

20

25

30

35

40

45

50

55

60

65

18

N, the method continues to S62, otherwise the method repeats
the computing, etc. by providing a next entry J from 1 to N in
the derived data type list, at S57. At S62, the method prepares
a PROPFIND response comprising one file entry for data D
and a one or more N virtual derived data file entries for a
second virtual derived data files D, ,. The method finally
ends at S63.

FIG. 15 depicts a schematic of an unbuffered aligned direct
1/O operation on a first data file as implemented by a server
program 22 to fulfill a HTTP GET request (e.g., a HTTP 1.1
WebDAV GET request), according to an embodiment of the
present invention. FIG. 15 depicts the computation used to
determine a file offset O' and file size S' from the first data file
that is aligned to an integer multiple of the storage device
block size, according to an embodiment of the present inven-
tion. A storage device block size is defined as the size in bytes
of the smallest possible input-output (I/O) operation per-
formed by a storage device management software program
that manages the storage device 26 and implements the
POSIX file system. For example, the storage device block
size can be of any byte-size, such as 512 bytes, 1024 bytes,
2048 bytes, or 4096 bytes, etc. The symbol B, denotes a value
greater than zero, that is an integer multiple of the storage
device block size. For example, a storage device block size
can be 512 bytes and B_, as the integer multiple of a storage
device block size, can be 512 bytes, 1024 bytes, 2048 bytes,
or 4096 bytes, etc. As another example, a storage device block
size can be 4096 bytes and B, as the integer multiple of a
storage device block size, can be 4096 bytes, 8192 bytes, or
16384 bytes, etc. A first data file D is of size S, bytes, where
S,>01s shown in FIG. 15. The intent is to read either S, bytes
from D starting the beginning of the file, or read S bytes from
data file D, starting from offset O relative to the start of the
file, where 0=0<S,, and 0<O+S=S,. As shown in FIG. 15,
file offset O is the start of data file D. S, is the size of data file
D in bytes and S, is greater than zero bytes. The intent is to
read S bytes from data file D, from offset O. S is the size of the
read operation. O is the starting offset for the read operation.
A single large unbuftered aligned direct /O read operation
may involve programming of one or more unbuffered aligned
direct I/O read operations. Together, they provide reading the
desired number of bytes from the offset of the single large
unbuffered aligned direct 1/O read operation. All read opera-
tions follow the offset and size computations depicted herein.
Each read request in the one or more unbuffered aligned
direct 1/O read operation may be used in sequence or in
parallel, synchronously or asynchronously, based on avail-
able features on specific file system and operating system
implementations.

As shown in FIG. 15, S and O may not be aligned to the
storage device block size. To issue an unbuffered aligned
direct I/O operation to read S bytes starting from offset O, we
need to read S' bytes starting from offset O', where O' is
defined is an offset from the start of file D that is less than O
and the nearest value to O that is an integer multiple of the
storage device block size. Thus, O' is an integer multiple of
B,.. The value of O' is computed based on the formula
0'=0-(0 % B,,). S' is the number of bytes to read starting
from offset O', where S' is an integer multiple of the storage
device block size, and S' is a value such that if a computer
program issues a read request of size S' starting from O', then
the computer program has read at least S bytes starting from
offset O. The value of S' is computed based on the formula
S'=(10-0"1+S)+(B,,-((10-0'I+S) % B,,)) % B,_,. To read S
bytes, starting from offset O from data file D, we issue an
unbuffered aligned direct /O read request to read aligned S'
bytes, starting from aligned offset O', for example

US 9,239,855 B2

19
READ_UNBUFFERED_USING_DIRECT IO(), from a
file, for example FILE, starting from offset O', of size S' bytes,
into computer memory, for example MEMORY_BUFFER.

As it can be appreciated, the operation A % B between two
integers A and B includes calculating the remainder of A
divided by B. For example 1024% 512150, 1023% 512 is 511,
and 1025% 512 is 1. In A % B, the % operator is the modulo
operator, representing the mathematical operation A modulo
B, also represented as A mod B or A MOD B. The operation
JA-BI between two integers A and B represents calculating
the difference between A and B and taking the positive value
of the difference between A and B. However, as it can be
appreciated, if the difference between A and B is positive then
the operation of taking the absolute value may not be needed.
Therefore, the symbol |A-BI such as in 10-0O'l should be
interpreted herein broadly to mean calculating the difference
between A and B with or without taking the absolute value of
the difference.

As shown in FIG. 15, S, is a value that is greater than or
equal to S, and S,' is an integer multiple of B,,. Its value is
computed as S;,=S,+(B,.~(S, % B..)) % B,,. To read the
entirefile D, oneneeds toread S, bytes. Since we are using an
unbuffered aligned direct I/O operation, we need to issue a
read request of size aligned to B_,. That size is S,,'. To read
entire file D, of size S,,, we issue an unbuffered aligned direct
1/0O read function, for example READ_UNBUFFERED_US-
ING_DIRECT_IO(), from a file, for example FILE, starting
from offset O, of size S,,' bytes, into computer memory, for
example MEMORY_BUFFER.

FIG. 16 depicts a flowchart of method of implementing a
HTTP GET request (e.g., aHTTP 1.1 WebDAV GET request)
for reading whole or part of a first data file using one or more
unbuffered aligned direct I/O operations, by a server program
22, according to an embodiment of the present invention. The
method includes reading data from file D using an unbuffered
(also known as non-cached) Direct /O method reading bytes
that are an integer multiple of B, from a file offset that is also
an integer multiple of B__. B__ is in turn an integer multiple of
the storage device block size. In one embodiment, the method
implements a part of the workflow specified in FIG. 13 that
requests for data from the first data file D.

As shown in FI1G. 16, the method begins at S70. The server
program 22 receives a HITP GET request G, from a client
program 20, at S71. At S71, in the GET request G, a client
program 20 has requested for one of two possible types of a
GET request. The client program 20 has either issued a first
request of type GET byte-range to GET one or more S-bytes
starting from offset O from a first data file D or has issued a
second request to GET the entire data file D, where the size
data file D is S, bytes and S, is greater than 0. The first
request size of one or more S-bytes starting from offset of O,
such that O is greater than or equal to zero and S+QOis less than
orequal to S,,. At S72 the request is validated, for example for
request syntax correctness, valid data range, existence of the
file, and security access rights. At S73 the method checks to
see if the request was a first GET byte-range request or a
second request to get the entire data file D. Ifit was a first GET
byte-range request, then the method continues at S74. If it was
nota GET byte-range request, then it was a second request to
get the entire data file D of size S,,, and the method continues
at S75. At S74, the method checks if the GET byte-range
request asked for the entire file, that is, it checks to see if S is
S, and of O is zero. If yes, the first byte-range request is
equivalent to the second request to get the entire file, and the
method continues at S75. If no, the first byte-range request
continues at S78.

10

15

20

25

30

35

40

45

50

55

60

65

20

As shown in FIG. 16, at S75, the method computes S, that
is aligned to B_,, an integer multiple of the storage device
block size using the formula S ,'=S,+(B,.—(S, % B_..)) % B...
At S76, the method issues a read request for S, bytes from
the start of data file D. The read request includes one or more
Unbuffered Aligned Direct IO read operations, also aligned to
B,.. The requested data is transferred into computer memory.
Since S, may be greater than S, and since S, is the size of
the data file D, the read operation may request for data past the
end of file (EOF) marker. Reading past the EOF marker is
permitted in the POSIX standard. At S77, S, bytes of data file
D are transmitted or sent from computer memory to the client
program 20 over a computer network as part of a response to
the GET request G,,. The method ends at S81.

As shown in FIG. 16, just prior to S78, the method has
verified that the request is a first GET byte-range request for
S-bytes starting from offset O within the data file D. At S78,
the method computes S' and O, aligned to B, an integer
multiple of the storage device block size, using the formulae
0'=0-(0 % B,,)) and S'=(10-O'l+S)+(B_—((I10-0'1+S) %
B,.)) % B... At S79, the method issues a read request to read
S' bytes starting from offset O' relative to the start of data file
D. The read request includes one or more Unbuffered Aligned
Direct JO read operations, also aligned to B,. The requested
data is transferred into computer memory. The first GET
byte-range request asked for data starting from offset O.
Bytes from offset O' to O were not requested. In computer
memory, the bytes start from offset O'. Therefore, at S80, the
method sends or transmits S-bytes starting from offset |0-O'|
in the computer memory as a valid response to the GET
request G, to the client program 20 over a computer net-
work. The method ends at S81.

FIG. 17 depicts a flowchart of a server program 22 imple-
menting a HTTP GET request (e.g., a HI'TP 1.1 WebDAV
GET request) for reading whole or part of a second virtual
derived data file using one or more unbuffered aligned direct
1/O operations on a first data file denoted by D and using a first
data file virtualization policy denoted by Pp, »; or Py,
according to an embodiment of the present invention. In one
embodiment, the method implements a part of the method
described in FIG. 13. The method dynamically computes and
derives data for a second virtual derived data file D ;where D ,
is one of virtual derived data files D, ,, derived from a first
data file D and first datga file virtualization policy P,,. The
derived data file D, does not exist physically on a computer
storage device. It is generated dynamically by the server
program 22 on demand.

As shown in FIG. 17, the method begins at S90. The server
program 22 receives a HTTP GET request G, from a client
program 20 at S91. In G, the client program 20 has issued
either a GET byte-range request for a one or more S -bytes
starting from offset O, from a second virtual derived data file
D or has issued a GET request to retrieve the entire second
virtual derived data file D . The request G, is validated at S92
for example, for syntax, and security. The server program 22
loads the data virtualization policy P, associated with D and
validates D, as a valid deliverable virtual derived data file, at
893. Using P, and D, the size S, of D, is computed at S94.
The values of O, and S; are validated against S, such that
0=0,<S,,, and 0<O+S <S5, at S95. At S96, the method
checks to see if the GET request is a byte-range request or not
abyte-range request, i.e. a request to GET the entire S, bytes
from the virtual derived data file D. If the GET request is a
byte-range request, the method continues to S97. At S97, the
method further checks if S =S;,; and O,=0. If yes, the method
continues to S98. If not, the method continues to S101. At

US 9,239,855 B2

21

S98, the method checks if partial data can be generated for D ,
at all. If yes, the method continues to S99, else the method
continues to S101.

As shown in FIG. 17, at S99, the method generates partial
data for virtual file D, by reading and processing some or all
bytes from the first data file D. The partial data is S; bytes in
size and represents data within the virtual derived datafile D,
starting from virtual offset O, as if it were a physical file on a
storage device. The method then continues to S100 where the
S bytes are transmitted or sent to a client program 20 as part
of the response to G,. At S101, the method generates the
complete S, bytes for D, in computer memory, using data in
P, and reading D as a whole or in part. The method then
transmits, at $102, S, bytes starting from offset O, from the
S bytes of computer memory, to client program 20 as part of
the response to G,. The method ends at S103. When reading
from the first data file D, one or more unbuffered aligned
direct I/O read operations are performed. Each read operation
reads a specified number of bytes that are an integer multiple
of B, from an offset that is an integer multiple of B, where
B, is an integer multiple of the storage device block size of
the storage devices containing the data, and is based on the
method depicted in FIG. 15.

Various parts of the embodiments of the present invention
perform one or more read operations from a first data file D,
for example as specified in S76 and S79 in the flowchart
depicted in FIG. 16 and in S99 and S101 in the flowchart
depicted in FI1G. 17. The read operation itself is implemented
using an interface based on the POSIX standard. To read data
starting from any offset O, an aligned offset O'=O-(0 % B,,)
is computed. To read any S-bytes starting from any offset O,
an aligned size S'=(10-O'[+S)+(B_-((10-0'1+S) % B,,)) %
B, is computed. A read operation starting at O', and having a
size of S' bytes is sufficient to efficiently read all data starting
from O and having a size of S bytes. If, for example, the entire
data file D of size S, is to be read, an aligned size S,'=S+
(B,—(S, % B,,)) % B,,) is computed. S;' can be past the end
of first data file D. The POSIX specification permits a read
operation past the end of a data file. If the S'is too large in size,
the read request can be broken up into more than one read
requests, each of a size that is an integer multiple of B,. B,
is an integer multiple of the storage device block size of the
storage devices containing the data.

As it can be appreciated from the above paragraphs, a
server program is a computer program that is configured to
run on a computer system (e.g., a computer server having one
or more processors), and a client program is a computer
program that is configured to run on a computer system (e.g.,
a client computer having one or more processors). The com-
puter systems running the client program and the server pro-
gram can be the same or different computer systems. The
computer system running the server program or the computer
system running the client program, or both, can include one or
more computers. The client program may be running on one
or more computers. Similarly, the server program may be
running on one or more computers. The computer systems
running client programs and server programs communicate
with each other over a network. The network may be a wired
network, a wireless network (e.g., a cellular network), the
internet, etc.

In some embodiments, programs for performing the meth-
ods or services in accordance with embodiments of the inven-
tion can be embodied as program products in a computer
system such as a personal computer or server or in a distrib-
uted computing environment comprising a plurality of com-
puters. The computer may include, for example, a desktop
computer, a laptop computer, a handheld computing device

10

20

25

30

35

40

45

50

55

60

65

22

such as a PDA, a tablet, etc. The computer program (e.g.,
server program, client program) products may include a com-
puter readable medium or storage medium or media having
instructions stored thereon used to program a computer to
perform the methods described above. Examples of suitable
storage medium or media include any type of disk including
floppy disks, optical disks, DVDs, CD ROMs, magnetic opti-
cal disks, RAMs, EPROMs, EEPROMs, magnetic or optical
cards, hard disk, flash card (e.g., a USB flash card), PCMCIA
memory card, smart card, or other media. Alternatively, a
portion or the whole computer program product can be down-
loaded from a remote computer or server via a network such
as the internet, an ATM network, a wide area network (WAN)
or a local area network.

Stored on one or more of the computer readable media, the
program may include software for controlling both the hard-
ware of a general purpose or specialized computer or proces-
sor. The software also enables the computer or processor to
interact with a user via output devices such as a graphical user
interface, head mounted display (HMD), etc. The software
may also include, but is not limited to, device drivers, oper-
ating systems and user applications.

Alternatively, instead or in addition to implementing the
methods described above as computer program product(s)
(e.g., as software products) embodied in a computer, the
method described above can be implemented as hardware in
which for example an application specific integrated circuit
(ASIC) or graphics processing unit or units (GPU) can be
designed to implement the method or methods of the present
invention.

The various databases described herein may be, include, or
interface to, for example, an Oracle™ relational database sold
commercially by Oracle Corporation. Other databases, such
as Informix™, DB2 (Database 2) or other data storage,
including file-based, or query formats, platforms, or
resources such as OLAP (On Line Analytical Processing),
SQL (Standard Query Language), a SAN (storage area net-
work), Microsoft Access™ or others may also be used, incor-
porated, or accessed. The database may comprise one or more
such databases that reside in one or more physical devices and
in one or more physical locations. The database may store a
plurality of types of data and/or files and associated data or
file descriptions, administrative information, or any other
data.

Although the various steps of the above method(s) are
described in the above paragraphs as occurring in a certain
order, the present application is not bound by the order in
which the various steps occur. In fact, in alternative embodi-
ments, the various steps can be executed in an order different
from the order described above.

Although the invention has been described in detail for the
purpose of illustration based on what is currently considered
to be the most practical and preferred embodiments, it is to be
understood that such detail is solely for that purpose and that
the invention is not limited to the disclosed embodiments, but,
on the contrary, is intended to cover modifications and
equivalent arrangements that are within the spirit and scope of
the appended claims. For example, it is to be understood that
the present invention contemplates that, to the extent pos-
sible, one or more features of any embodiment can be com-
bined with one or more features of any other embodiment.

Furthermore, since numerous modifications and changes
will readily occur to those of skill in the art, it is not desired to
limit the invention to the exact construction and operation
described herein. Accordingly, all suitable modifications and
equivalents should be considered as falling within the spirit
and scope of the invention.

US 9,239,855 B2

23

The invention claimed is:
1. A method for retrieving at least a portion of a first data
file, the method being implemented by a computer system
that includes one or more processors configured to execute
computer program modules, the first data file being stored in
a storage device in communication with the computer system,
the method comprising:
receiving, by the computer system from a client computer
system in communication with the computer system, a
request for the at least a portion of the first data file, the
request including a start of the at least a portion of the
first data file and a size of the at least a portion of the first
data file;
computing, by the computer system, a data offset that is
aligned to an integer multiple of a block size of the
storage device and nearest to the start of the at least a
portion of the first data file, wherein computing the data
offset comprises computing a data offset O' using the
start O of the at least a portion of the first data file and
using an integer multiple of the block size Bsz of the
storage device using the following equation O'=0-(0 %
Bsz), where the operator % is the modulo operator;

computing, by the computer system, a byte-range that is an
integer multiple of the block size of the storage device,
the byte-range being greater than and encompasses the
size of the at least a portion of the first data file;

reading, by the computer system, data within the byte-
range and transferring the data within the byte-range
starting at the data offset into memory of the computer
system; and

transmitting, by the computer system to the client com-

puter system, the at least a portion of the first data file
from the memory starting at an offset relative to the data
offset that is aligned to an integer multiple of the block
size of the storage device.

2. The method according to claim 1, wherein receiving the
request includes receiving a HTTP GET request.

3. The method according to claim 1, wherein the reading
comprises reading using one or more Unbuffered Aligned
Direct Input-Output (IO) read operations.

4. The method according to claim 1, wherein computing
the byte-range comprises computing a byte-range S' using an
integer multiple of the block size Bsz of the storage device,
the data offset O' and the start O of the at least a portion of first
data file using the following equation S'=(10-0O'l+S)+(Bsz—
((10-0'1+S) % Bsz)) % Bsz, where the operator % is the
modulo operator and where S is the size of the at least a
portion of the first data file.

5. The method according to claim 4, wherein reading the
data within the byte-range comprises reading data within the
size S' starting at the data offset O' and transferring into the
memory of the computer system.

6. The method according to claim 5, wherein transmitting
the at least a portion of the first data file from the memory
comprises transmitting the at least a portion of the first data
file from the memory starting at offset |O-O'l.

7. A method for retrieving at least a portion of a second
derived virtual data file, the at least a portion of the second
derived virtual data file being derived from at least a portion
of afirst data file based on a first data file virtualization policy,
the method being implemented by a computer system, the
first data file being stored in a storage device in communica-
tion with the computer system, the method comprising:

receiving, by the computer system from a client computer

system in communication with the computer system, a
request for the at least a portion of the second derived
virtual data file, the request including a virtual offset of

10

15

20

25

30

35

40

45

24

the at least a portion of the second derived virtual data
file and a size of the at least a portion of the second
derived virtual data file;

computing, by the computer system, a data offset and a size

of at least a portion of the first data file to derive the
requested at least a portion of the second derived virtual
data file, wherein computing the data offset comprises
computing a data offset O' using the start O of the at least
a portion of the first data file and using an integer mul-
tiple of a block size Bsz of the storage device using the
following equation O'=0-(O % Bsz), where the opera-
tor % is the modulo operator;

reading, by the computer system, data from the first data

file based on the computed data offset and size of the at
least a portion of the first data file;

generating, by the computer system, the requested at least

a portion of the second derived data file using informa-
tion in the first data file virtualization policy and the read
data from the first data file; and

transmitting, by the computer system to the client com-

puter system, the requested at least a portion of the
second derived virtual data file.

8. The method according to claim 7, wherein receiving the
request includes receiving a HTTP GET request.

9. The method according to claim 7, further comprising
loading, by the computer system, the first data file virtualiza-
tion policy.

10. The method according to claim 7, further comprising
validating, by the computer system, the request for the at least
a portion of the second derived virtual data file.

11. The method according to claim 10, wherein generating
the requested at least a portion of the second derived data file
comprises generating partial data from the second derived
virtual data file starting from the virtual offset of the at least a
portion of the second derived virtual data file.

12. A system for retrieving at least a portion of a first data
file stored in a storage device in communication with a com-
puter system, the computer system being configured to:

receive from a client computer system in communication

with the computer system, a request for the at least a
portion of the first data file, the request including a start
of the at least a portion of the first data file and a size of
the at least a portion of the first data file;

compute a data offset that is aligned to an integer multiple

of a block size of the storage device and nearest to the
start of the at least a portion of the first data file, wherein
the data offset O' is computed using the start offset O of
the at least a portion of the first data file and using an
integer multiple of the block size Bsz of the storage
device using the following equation O'=0-(0O % Bsz),
where the operator % is the modulo operator;

compute a byte-range that is an integer multiple of the

block size of the storage device, the byte-range being
greater than and encompasses the size of the at least a
portion of the first data file;

read data within the byte-range and transferring the data

within the byte-range starting at the data offset into
memory of the computer system; and

transmit to a client computer system the at least a portion of

the first data file from the memory starting at an offset
relative to the data offset that is aligned to an integer
multiple of the block size of the storage device.

13. The system according to claim 12, wherein the request
includes a HTTP GET request.

US 9,239,855 B2

25

14. The system according to claim 12, wherein the com-
puter system is further configured to read data using one or
more Unbuffered Aligned Direct Input-Output (IO) read
operations.

15. The system according to claim 12, wherein the com-
puter system is configured to compute a byte-range S' using
an integer multiple of the block size Bsz of the storage device,
the data offset O' and the start offset O of the at least a portion
of first data file using the following equation S'=(10-O'l+S)+
(Bsz—((10-0'1+8) % Bsz)) % Bsz, where the operator % is
the modulo operator and where S is the size of the at least a
portion of the first data file.

16. The system according to claim 15, wherein the com-
puter system is further configured to read the data within the
byte-range comprises reading data within the size S' starting
at the data offset O' and transfer into the memory of the
computer system.

17. The system according to claim 16, wherein the com-
puter system is further configured to transmit the at least a
portion of the first data file from the memory starting at offset
10-0'l.

18. A system for retrieving at least a portion of a second
derived data file, the at least a portion of the second derived
virtual data file being derived from at least a portion of a first
data file based on a first data file virtualization policy, the first
data file being stored in a storage device in communication
with a computer system, the computer system being config-
ured to:

receive from a client computer system in communication

with the computer system, a request for the at least a
portion ofthe second derived virtual data file, the request
including a virtual offset of the at least a portion of the

10

15

25

30

26

second derived virtual data file and a size of the at least
a portion of the second derived virtual data file;

compute a data offset and a size of at least a portion of the
first data file to derive the requested at least a portion of
the second derived virtual data file, wherein the data
offset O' is computed using the start offset O of the at
least a portion of the first data file and using an integer
multiple of a block size Bsz of the storage device using
the following equation O'=0-(0 % Bsz), where the
operator % is the modulo operator;
read data from the first data file based on the computed data
offsetand size of the at least a portion of the first data file;

generate the requested at least a portion of the second
derived data file using information in the first data file
virtualization policy and the read data from the first data
file; and

transmit to the client computer system the requested at

least a portion of the second derived virtual data file.

19. The system according to claim 18, wherein the request
includes a HTTP GET request.

20. The system according to claim 18, wherein the com-
puter system is further configured to load the first data file
virtualization policy.

21. The system according to claim 20, wherein the com-
puter system is further configured to validate the request for
the at least a portion of the second derived virtual data file.

22. The system according to claim 21, wherein the com-
puter system is further configured to generate partial data
from the second derived virtual data file starting from the
virtual offset of the at least a portion of the second derived
virtual data file.

